Application of nonlinear autoregressive neural network to estimation of global solar radiation over Nigeria

Keywords: Climatic region, Global solar radiation, MLR model, NARX model, Prediction, Statistical metrics


In this paper, surface data meteorological were used as input variables to create, train and validate the network in which global solar radiation serves as a target. These surface data were obtained from the archives of the European centre for Medium-Range weather forecast for a span of 36 years (1980-2015) over Nigeria. The research aims to evaluate the predictive ability of the nonlinear autoregressive neural network with exogenous input (NARX) model compared with the multivariate linear regression (MLR) model using the statistical metrics. Model selection analysis using the index of agreement (dr) metric showed that the MLR and NARX models have values of 0.710 and 0.853 in the Sahel, 0.748 and 0.849 in the Guinea Savannah, 0.664 and 0.791 in the Derived Savannah, 0.634 and 0.824 in the Coastal regions, and 0.771 and 0.806 in entire Nigeria respectively. Meanwhile, error analyses of the models using root mean square errors (RMSE) showed the values of 1.720 W/m2 and 1.417 in the Sahel region, 2.329 W/m2 and 1.985 W/m2 in the Guinea Savannah region, 2.459 W/m2 and 2.272 W/m2 in the Derived Savannah region, 2.397 W/m2 and 2.261 W/m2 in the Coastal region and 1.691 W/m2 and 1.600 W/m2 in entire Nigeria for MLR and NARX models respectively. These showed that the NARX model has higher dr values and lower RMSE values over all the climatic regions and entire Nigeria than the MLR model. Finally, it can be inferred from these metrics that the NARX model gives a better prediction of global solar radiation than the traditional common MLR models in all the zones in Nigeria.


Download data is not yet available.


O. S. Ojo, and B. Adeyemi, “Estimation of solar radiation using air temperature and geographical coordinate over Nigeria”, Pacific J Sci. Technol., vol. 15, no. 2, pp. 78–88, 2014.

C. Augustine, and M. N. Nnabuchi, “Correlation between sunshine hours and global solar radiation in Warri, Nigeria”, Pacific J Sci. Technol., vol. 10, no. 2, pp. 574–579, 2009.

I. G. Friday, B. C. Udochukwu, T. Igbawua, T. Alaxander, and O. J. Ndubuisi, “Assessment of global solar radiation at selected points in Nigeria using artificial neural network model”, Int. J Eng. Constr. Comput., pp. 376–390, 2019, doi: 10.9734/ijecc/2019/v9i730123

T. R. Ayodele, A. S. O. Ogunjuyigbe, and C. G. Monyei, “On the global solar radiation prediction methods”, J Renew. Sustain. Ener., vol. 8, no. 2, 2016.

M. S. Okundamiya, J. O. Emagbetere, and E. A. Ogujor, “Evaluation of various global solar radiation models for Nigeria”, Int. J Green Energy, vol. 13, no. 5, pp. 505–512, 2016.

E. O. Ogolo, “Estimation of global solar radiation in Nigeria using a modified Angstrom model and the trend analysis of the allied meteorological components”, 92.60. Vb; 92.60. Rg; 92.60. hv, 2014.

T. R. Ayodele, and A. S.O. Ogunjuyigbe, “Performance assessment of empirical models for prediction of daily and monthly average global solar radiation: The case study of Ibadan, Nigeria”, Int. J Amb. Ener., vol. 38, no. 8, pp. 803–813, 2017.

S. E. Etuk, O. E. Agbasi, and N. C. Samuel, “Modelling and estimating photosynthetically active radiation from measured global solar radiation at Calabar, Nigeria”, Physi. Sci. Int. J, pp. 1–12, 2016.

B. Adeyemi and O. S. Ojo, “Empirical modelling of solar radiation for selected cities in Nigeria using multivariate regression technique”, African J Environ. Sci. Technol. vol. 8, no. 10, pp. 582–595, 2014.

S. Agbo, “Evaluation of the regression parameters of the Angstrom-Page model for predicting global solar radiation”, J Ener. Southern Africa, vol. 24, no. 2, pp. 46–50, 2013.

Y. K. Sanusi and S. G. Abisoye, “Estimation of solar radiation at Ibadan, Nigeria”, J Emerg. Trends Eng. Appl. Sci., vol. 2, no. 4, pp. 701–705, 2011.

C. Nwokocha, R. Kasei, and U. Goll, “Modelling of solar radiation for West Africa: the Nigerian option”, Int. J Physi. Sci., vol. 8, no. 28, pp. 1458–1463, 2013.

O. O. Ajayi, O. D. Ohijeagbon, C. E. Nwadialo, and O. Olasope, “New model to estimate daily global solar radiation over Nigeria”, Sustain. Ener. Technol. Assessm., vol. 5, pp. 28–36, 2014.

F. Deng, G. Su, C. Liu, and Z. Wang, “Global solar radiation modelling using the artificial neural network technique”, in 2010 Asia-Pacific Power and Energy Engineering Conference, 2010, pp. 1–5.

A. Mellit, and A. M. Pavan, “A 24-h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy”, Sol. Ener., vol. 84, no. 5, pp. 807–821, 2010.

M. Alharbi, Daily global solar radiation forecasting using ANN and extreme learning machine: A case study in Saudi Arabia, Dalhousie University Halifax, Nova Scotia, 2013.

R. Wang, J. Zeng, X. Feng, and Y. Xia, “Evaluation of effect of plastic injection moulding process parameters on shrinkage based on neural network simulation”, J Macromolecu. Sci., Part B, vol. 52, no. 1, pp. 206–221, 2013.

A. Ghanbarzadeh, A. R. Noghrehabadi, E. Assareh, and M. A. Behrang, “Solar radiation forecasting based on meteorological data using artificial neural networks”, in 2009 7th IEEE Int. Conference on Industrial Informatics, 2009, pp. 227–231.

A. Ahmad and T. N. Anderson, “Global solar radiation prediction using artificial neural network models for New Zealand”, in proceeding of the 52nd Annual Conference, Australian Solar Energy Society (Australian Solar Council), Melbourne, May 9, 2014.

F. S. Tymvios, C. P. Jacovides, S. C. Michaelides, and C. Scouteli, “Comparative study of Ångström’s and artificial neural networks’ methodologies in estimating global solar radiation”, Sol. Ener., vol. 78, no. 6, pp. 752–762, 2005.

J. Mubiru and E. Banda, “Estimation of monthly average daily global solar irradiation using artificial neural networks”, Sol. Ener., vol. 82, no. 2, pp. 181–187, 2008.

K. Moustris, A. G. Paliatsos, A. Bloutsos, K. Nikolaidis, I. Koronaki, and K. Kavadias, “Use of neural networks for the creation of hourly global and diffuse solar irradiance data at representative locations in Greece”, Renew. Ener. vol. 33, no. 5, pp. 928–932, 2008.

S. Mohanty, P. K. Patra, and S. S. Sahoo, “Prediction of global solar radiation using nonlinear auto regressive network with exogenous inputs (narx)”, in 2015 39th National Systems Conference (NSC), Greater Noida, India, 2015, pp. 1–6.

Rangel, E., Cadenas, E., Campos-Amezcua, R. and Tena, J. L., “Enhanced prediction of solar radiation using NARX models with corrected input vectors”, Energies, vol. 13, no. 10, p. 2576, 2020

D. A. Fadare, “Modelling of solar energy potential in Nigeria using an artificial neural network model”, Appl. Ener., vol. 86, no. 9, pp. 1410–1422, 2009.

E. V. Tikyaa, M. I. Echi, B. C. Isikwue, and A. N. Amah, “A hybrid SARIMA-NARX nonlinear dynamics model for predicting solar radiation in Makurdi”, Int. J Math. Computat. Sci., vol. 4, no. 2, 2018, pp. 35-47, 2018.

G. Ozoegwu, “Artificial neural network forecast of monthly mean daily global solar radiation of selected locations based on time series and month number”, J Cleaner Prod., vol. 216, pp. 1–13, 2019.

T. Lin, B. G. Horne, P. Tino, and C. L. Giles, “Learning long-term dependencies in NARX recurrent neural networks”, IEEE Trans. Neural Net., vol. 7, no. 6, pp. 1329–1338, 1996.

A. Di Piazza, M. C. Di Piazza, and G. Vitale, “Solar and wind forecasting by NARX neural networks”, Renew. Ener. Environ. Sustain. vol. 1, p. 39, 2016.

H. Jaeger, Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the" echo state network" approach: GMD-Forschungszentrum Informationstechnik Bonn, 2002.

E. Diaconescu, “The use of NARX neural networks to predict chaotic time series”, Wseas Trans. Comp. Res., vol. 3, no. 3, pp. 182–191, 2008.

M. Bishop and others, Neural networks for pattern recognition: Oxford university press, 1995.

T. Pham and X. Liu, “Training of elman networks and dynamic system modelling”, Int. J Sys. Sci., vol. 27, no. 2, pp. 221–226, 1996.

Y. K. Sanusi and S. G. Abisoye, “Estimation of solar radiation at Ibadan, Nigeria”, J Emerg. Trends Eng. Appl. Sci., vol. 2, no. 4, pp. 701–705, 2011.

R. J. Stone, “Improved statistical procedure for the evaluation of solar radiation estimation models”, Sol. Ener., vol. 51, no. 4, pp. 289–291, 1993.

N. Halouani, C. T. Nguyen, and D. Vo-Ngoc, “Calculation of monthly average global solar radiation on horizontal surfaces using daily hours of bright sunshine”, Sol. Ener., vol. 50, no. 3, pp. 247–258, 1993.

C. J. Willmott, S. M. Robeson, and K. Matsuura, “A refined index of model performance”, Int. J Climatology, vol. 32, no. 13, pp. 2088–2094, 2012.

M. S. Okundamiya and A. N. Nzeako, “Empirical model for estimating global solar radiation on horizontal surfaces for selected cities in the six geopolitical zones in Nigeria”, Res. J Appl. Sci. Eng. Technol., vol. 2, no. 8, pp. 805-812, 2010.

How to Cite
Ojo , O. S., & Adeyemi, B. (2020). Application of nonlinear autoregressive neural network to estimation of global solar radiation over Nigeria . Journal of Advances in Science and Engineering, 3(2), 68–79.
Research Articles